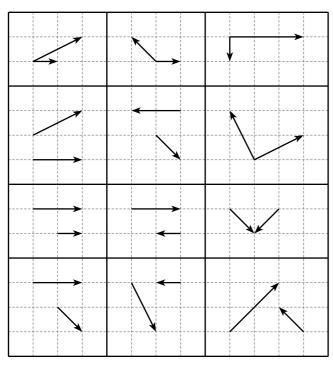
Projections

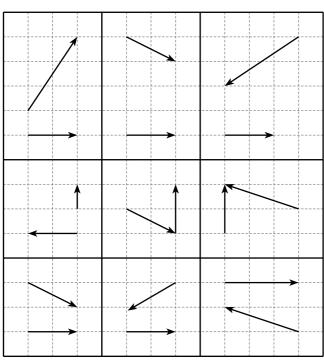
Exercice nº 1

Déterminer par projection de l'un sur l'autre le produit scalaire des deux vecteurs dans chaque case. L'unité est le carreau.



Exercice nº 2 -

Déterminer par projection de l'un sur l'autre le produit scalaire des deux vecteurs dans chaque case. L'unité est le carreau.



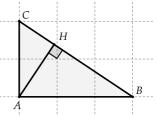
Exercice nº 3 -

ABC est rectangle en A. L'unité est le carreau.

1.
$$\overrightarrow{AB} \cdot \overrightarrow{CA} =$$

2.
$$\overrightarrow{BC} \cdot \overrightarrow{BA} =$$

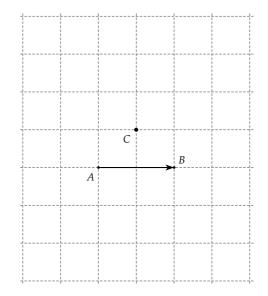
4. En déduire *BH*.



Exercice nº 4 —

Tracer sur la figure l'ensemble \mathcal{L}_2 des points M tels que $\overrightarrow{AB} \cdot \overrightarrow{CM} = 2$.

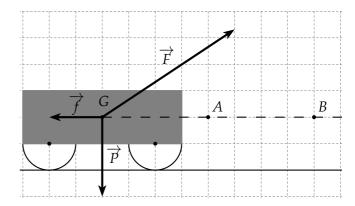
Tracez de même \mathcal{L}_k ensemble des points M tels que $\overrightarrow{AB} \cdot \overrightarrow{CM} = k$ pour les valeurs k = 4 puis k = 0, et k = -6.



Exercice nº 5 — Travail d'une force

En Sciences Physiques on définit le travail $W_{A\to B}(\overrightarrow{F})$ (énergie en Joules) d'une force \overrightarrow{F} sur un déplacement de A à B comme le produit scalaire :

$$W_{A\to B}(\overrightarrow{F}) = \overrightarrow{F} \cdot \overrightarrow{AB}$$



On a représenté un wagonnet qui roule sur des rails, entraîné par une force de traction F, soumis à son poids \overrightarrow{P} et subissant une force de frottements f . Calculez le travail de chacune de ces forces lorsque le centre de gravité du wagonnet se déplacera de A à B. On prendra un carreau comme unité (pour les mètres et les Newton).

1.
$$W_{A\to B}(\overrightarrow{F}) =$$

2.
$$W_{A\to B}(\overrightarrow{f}) =$$

3.
$$W_{A\to B}(\overrightarrow{P}) =$$

Formule avec cosinus

Exercice nº 6 -

ABC est un triangle équilatéral de côté 6. Calculez $\overrightarrow{AB} \cdot \overrightarrow{AC}$ et $\overrightarrow{AB} \cdot \overrightarrow{BC}$.

Exercice no 7 —

Soit \vec{u} et \vec{v} deux vecteurs.

- **1.** Justifier que $\vec{u} \cdot \vec{v}$ et $\vec{v} \cdot \vec{u}$ sont égaux.
- **2.** Justifier que $(2\vec{u}) \cdot \vec{v} = 2 \times (\vec{u} \cdot \vec{v})$.

Exercice nº 8 —

Soit ABC un triangle tel que AB = 6, AC = 4, $\widehat{ABC} = 60^{\circ} \text{ et } \widehat{BAC} = 30^{\circ}. \text{ Calculez}:$

1.
$$\overrightarrow{AB} \cdot \overrightarrow{AC}$$

1.
$$\overrightarrow{AB} \cdot \overrightarrow{AC}$$
 2. $\overrightarrow{AC} \cdot \overrightarrow{BC}$ **3.** $\overrightarrow{BA} \cdot \overrightarrow{BC}$

3.
$$\overrightarrow{BA} \cdot \overrightarrow{BC}$$

Exercice nº 9 —

Soit ABC un triangle tel que AB = 4, AC = 3, $\widehat{BAC} = 60^{\circ}$. Calculez BC

Exercice no 10 -

ABCD est un carré de côté 4 et de centre O, calculez les produits scalaires par la méthode de votre choix:

1.
$$\overrightarrow{AB} \cdot \overrightarrow{CD}$$

4.
$$\overrightarrow{AC} \cdot \overrightarrow{BD}$$

7.
$$\overrightarrow{OC} \cdot \overrightarrow{OB}$$

2.
$$\overrightarrow{AB} \cdot \overrightarrow{AC}$$

5.
$$\overrightarrow{AD} \cdot \overrightarrow{BC}$$

8.
$$\overrightarrow{OA} \cdot \overrightarrow{OC}$$

3.
$$\overrightarrow{BA} \cdot \overrightarrow{DA}$$

6.
$$\overrightarrow{AD} \cdot \overrightarrow{CD}$$

9.
$$\overrightarrow{OB} \cdot \overrightarrow{AD}$$

Exercice nº 11 -

On considère un triangle ABC où AB = 5 et BC = 6et $\widehat{ABC} = 60^{\circ}$.

- 1. Faire une figure.
- 2. Calculer $\overrightarrow{BA} \cdot \overrightarrow{BC}$
- **3.** Calculer $\overrightarrow{CA} \cdot \overrightarrow{CB}$. On remarquera d'abord que $\overrightarrow{CA} = \overrightarrow{CB} + \overrightarrow{BA}$.

Formule avec longueurs uniquement

Exercice nº 12

Soit \vec{u} et \vec{v} deux vecteurs.

- 1. En développant $(\vec{u} \vec{v})^2$ retrouver la formule: $\vec{u} \cdot \vec{v} = \frac{1}{2} (||\vec{u}||^2 + ||\vec{v}||^2 - ||\vec{u} - \vec{v}||^2).$
- 2. Déterminer une formule analogue faisant intervenir $||\vec{u} + \vec{v}||^2$
- 3. Tracez un parallélogramme ABCD où on note $\vec{u} = A\vec{B}$ et $\vec{v} = A\vec{C}$. Traduire les deux relations précédentes pour $\vec{u} \cdot \vec{v}$ avec les longueurs de la figure.

Exercice no 13 -

On considère un triangle ABC où AB = 3, AC = 2et $BC = \sqrt{7}$

- **1.** Calculez $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
- **2.** En déduire \widehat{BAC}

Exercice no 14 -

On considère un parallélogramme ABCD où AB = $\sqrt{3}$, $AC = \sqrt{15}$ et $AD = \sqrt{6}$

- **1.** Calculez $\overrightarrow{AB} \cdot \overrightarrow{AD}$.
- **2.** En déduire \widehat{BAD}

Exercice nº 15

On considère un triangle *ABC* avec :

AB = 1, AC = 2 et BC = 3. Déterminer une valeur approchée des angles de ce triangle.

Exercice nº 16 -

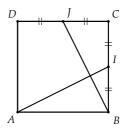
Soit ABC un triangle quelconque établir une formule permettant de calculer \widehat{BAC} en fonction des côtés du triangle.

Orthogonalité. (Chasles)

Exercice no 17 -

ABCD est un carré. On note I et J les milieux respectifs de [BC] et [CD].

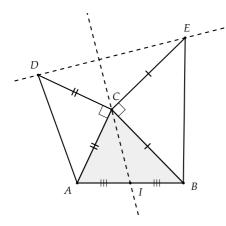
En développant $(\overrightarrow{AB} + \overrightarrow{BI}) \cdot (\overrightarrow{BC} + \overrightarrow{CI})$, prouver que : $(AI)\bot(BJ)$.



Chapitre 11

Exercice nº 18

On considère un triangle quelconque ABC, I le milieu de [AB] et les points D et E tels que les triangles directs ACD et CBE soient isocèles et rectangles en C.



- **1.** Quelle conjecture faire sur (CI) et (ED)?
- **2.** Justifier que $\overrightarrow{CI} = \frac{1}{2}\overrightarrow{CA} + \frac{1}{2}\overrightarrow{CB}$.
- 3. En déduire que :

$$\overrightarrow{CI} \cdot \overrightarrow{DE} = \frac{1}{2} \left(\overrightarrow{CA} \cdot \overrightarrow{CE} - \overrightarrow{CB} \cdot \overrightarrow{CD} \right).$$

4. Conclure.

Formule analytique : xx' + yy'

Dans ces exercices on se place dans un repère orthonormé $(O; \vec{\imath}; \vec{\jmath})$.

Exercice nº 19 -

-Démonstrations

Soit
$$\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$.

① En développant : $\vec{u} \cdot \vec{v} = (x\vec{\imath} + y\vec{\jmath})(x'\vec{\imath} + y'\vec{\jmath})$ établir la formule analytique du produit scalaire :

$$\vec{u} \cdot \vec{v} = xx' + yy'$$

2 Établir cette même formule en partant de

$$\vec{u} \cdot \vec{v} = \frac{1}{2} \left(||\vec{u}||^2 + ||\vec{v}||^2 - ||\vec{u} - \vec{v}||^2 \right)$$

Rappel : On sait que $||\vec{u}|| = \sqrt{x^2 + y^2}$

Exercice nº 20

Calculer les produits scalaires suivants :

1.
$$\vec{u} \cdot \vec{v}$$
 où $\vec{u} \begin{pmatrix} 15 \\ -8 \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} 6 \\ 9 \end{pmatrix}$

2.
$$\vec{s} \cdot \vec{t}$$
 où $\vec{s} \begin{pmatrix} -1 \\ -2 \end{pmatrix}$ et $\vec{t} \begin{pmatrix} -3 \\ -4 \end{pmatrix}$

3.
$$\vec{a} \cdot \vec{b}$$
 où $\vec{a} \begin{pmatrix} \sqrt{3} - 2 \\ 6 \end{pmatrix}$ et $\vec{b} \begin{pmatrix} \sqrt{3} + 2 \\ 1 \end{pmatrix}$

4.
$$\vec{c} \cdot \overrightarrow{UV}$$
 où $\vec{c} \begin{pmatrix} \sqrt{6} \\ 2 \end{pmatrix}$, $U(\sqrt{24} + 5; 1)$, $V(5; \sqrt{2})$

5.
$$\vec{r} \cdot \overrightarrow{AB}$$
 où $\vec{r} \begin{pmatrix} 3 \\ 7 \end{pmatrix}$, $A(-1;2)$ et $B(-3;6)$

6.
$$\overrightarrow{CD} \cdot \overrightarrow{MR}$$
 où $C(5;6)$, $D(-1;4)$, $M(3;7)$ et $R(8;9)$

7.
$$\overrightarrow{ST} \cdot \overrightarrow{EF}$$
 où $E(0;1)$, $F(3;0)$, $S(8;8)$ et $T(5;5)$

Exercice nº 21 -

On considère les points A(1; 3), B(3; 1), C(-2; -2), D(13; -5) et E(4; 3).

- 1. Les droites (AC) et (AB) sont-elles perpendiculaires?
- 2. Même question pour :
 - **a.** (AC) et (BD)
 - **b.** (*BE*) et (*CD*)

Exercice nº 22 -

On considère trois points $A(\sqrt{6}; \sqrt{7})$, $B(\sqrt{2}; \sqrt{3}), C(-\sqrt{6}; \sqrt{7}+2\sqrt{3}).$

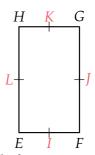
Montrer que *ABC* est rectangle en *B*.

Exercice nº 23

Reprendre l'exercice nº 17 en utilisant un repère orthonormé adapté et en utilisant la formule analytique du produit scalaire.

Exercice nº 24 -

On considère le rectangle *EFGH* ci-dessous, tel que EF = 4 et EH = 7, et les points I, J, K et L, milieux respectifs des côtés [EF], [FG], [GH] et [EH].



- 1. Reproduire la figure.
- 2. En choisissant un repère orthonormé adapté, calculer:
 - a. $\overrightarrow{EG} \cdot \overrightarrow{FH}$ c. $\overrightarrow{EF} \cdot \overrightarrow{GH}$ e. $\overrightarrow{IL} \cdot \overrightarrow{IG}$ b. $\overrightarrow{JL} \cdot \overrightarrow{EG}$ d. $\overrightarrow{HF} \cdot \overrightarrow{EK}$ f. $\overrightarrow{HJ} \cdot \overrightarrow{JK}$

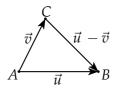
Diverses expressions.

Dans cette page, \vec{u} et \vec{v} désignent deux vecteurs quelconques. Le poduit scalaire de deux vecteurs peut être défini de diverses manières et on a les formules suivantes qui sont équivalentes. On choisit la plus adaptée selon le contexte de l'exercice.

Avec des normes uniquement :

$$\vec{u} \cdot \vec{v} = \frac{1}{2} \Big(||\vec{u}||^2 + ||\vec{v}||^2 - ||\vec{u} - \vec{v}||^2 \Big)$$

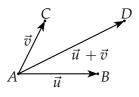
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} \left(AB^2 + AC^2 - BC^2 \right)$$



On retrouve rapidement cette formule en développant $(\vec{u} - \vec{v})^2$. On a aussi une formule équivalente en développant $(\vec{u} + \vec{v})^2$:

$$\vec{u} \cdot \vec{v} = \frac{1}{2} \Big(||\vec{u} + \vec{v}||^2 - ||\vec{u}||^2 - ||\vec{v}||^2 \Big)$$

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} \left(AD^2 - AB^2 - AC^2 \right)$$



Avec des normes et un angle :

$$\vec{u} \cdot \vec{v} = ||\vec{u}|| \times ||\vec{v}|| \times \cos(\vec{u}; \vec{v})|$$

Par projection orthogonale:

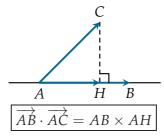
Soit *A*, *B* et *C* trois points distincts du plan et *H* est le projeté orthogonal de C sur (AB). On a alors :

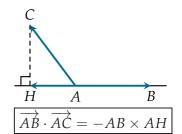
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AH}.$$

Pour $H \neq A$, il y a deux configurations possibles :

 \overrightarrow{AB} et \overrightarrow{AH} ont même sens :

 \overrightarrow{AB} et \overrightarrow{AH} sont de sens opposés:





Formule analytique (dans un repère orthonormé):

Soit
$$\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$. $\boxed{\vec{u} \cdot \vec{v} = xx' + yy'}$

$$\vec{u} \cdot \vec{v} = xx' + yy'$$

II **Propriétés**

- ① Le produit scalaire est commutatif : $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$ (Symétrie des les formules, sauf par projection).
- ② Carré scalaire : On note \vec{u}^2 le carré scalaire d'un vecteur \vec{u} (c'est un réel positif) : $\vec{u}^2 = \vec{u} \cdot \vec{u} = ||\vec{u}||^2$.
- 3 Les opérations avec le produit scalaire se passent bien. Par exemple : ce produit est distributif sur l'addition de vecteurs : $(\vec{u} + \vec{v})(\vec{w} + \vec{z}) = \vec{u} \cdot \vec{w} + \vec{u} \cdot \vec{z} + \vec{v} \cdot \vec{w} + \vec{v} \cdot \vec{z}$. On a donc aussi les identités habituelles pour $(\vec{u} + \vec{v})^2$. Il est associatif avec la multiplication par un réel $k : (k\vec{u}) \cdot \vec{v} = k(\vec{u} \cdot \vec{v})$ de sorte que ces parenthèses sont inutiles. Le vecteur nul est absorbant : $\vec{0} \cdot \vec{u} = 0$ quel que soit \vec{u} , etc.
- ① Orthogonalité. Deux vecteurs \vec{u} et \vec{v} sont dit orthogonaux (ce qu'on note $\vec{v} \perp \vec{v}$) si, et seulement si, $\vec{u} \cdot \vec{v} = 0$. Le vecteur nul est donc orthogonal à tout vecteur.

Dire que deux droites (AB) et (CD) sont perpendiculaires revient à dire que $\overrightarrow{AB} \cdot \overrightarrow{CD} = 0$.

⑤ Al-Kashi. (aka "The cosine rule") En comparant les deux premières écritures du produit scalaire on a dans un triangle ABC une formule permettant de déterminer un troisième côté si on connait l'angle entre deux côtés connus. On retrouve le théorème de Pythagore quand l'angle est droit :

$$CB^{2} = AB^{2} + AC^{2} - 2AB \times AC \times \cos(\widehat{BAC})$$